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Abstract 

The purpose of t h i s  contract  is  t o  develop techniques f o r  

generating and detect ing coherent acoustic waves i n  so l id s  i n  the frequency 

range above 100 GHz. During the f i rs t  year of t he  contract  advances have 

been made both i n  the areas of detection and generation. Techniques were 

first developed f o r  detect ing phonons i n  the  range of 1-3 CHz by op t i ca l  

Bragg scat ter ing.  

transducer techniques and interferometric methods were used f o r  separating 

t h e  frequency shif ted l i g h t  component. 

laser was developed f o r  phonon generation. 

l i n e s  wi th  a t o t a l  peak power of 100 KW. 

power level the  laser could i n i t i a t e  an acoust ic  wave with a s t r a i n  

amplitude of 10 through e l ec t ros t r i c t ive  ac t ion  a t  t h e  surface of a 

c rys ta l .  

generate and de tec t  phonons i n  S A 1  0 

f i r s t  t r y  have, so  far, been negative. The reasons f o r  the negative 

results are discussed along wi th  the  future d imct ion  of the  program. 

A theoretical. study was carr ied on concurrently with the  above experimental 

work and was concerned with attenuation of high-frequency phonons i n  

so l id s  a t  low temperatures. 

a t tenuat ion w i l l  vary as the  f i f t h  power of frequency and w i l l  be qui te  

small below 10l2 Hz. 

I n  th i s  case the phonons were generated by t h i n  f i l m  

2 Concurrently, a &-spoiled CO 

This laser yielded t e n  infrared 

It was estimated that a t  t h i s  

-6 

The above techniques were then combined i n  an attempt t o  

a t  9 GHz. The results of t h i s  
2 3  

This work has demonstrated that the  acoust ic  



I INTRODUCTION 

There a re  many reasons t h a t  j u s t i f y  the development of 

techniques f o r  generating and detecting coherent acoustic waves 

(acoust ic  phonons) i n  sol ids .  On one hand, these techniques are important 

f o r  obtaining basic  information about the  physical propert ies  of c rys ta l s .  

For example, the  basic  mechanisms of many phenomenological propert ies  of 

c rys ta l s ,  e.g., spec i f ic  heat, thermal conductivity, thermal expansion 

and luminescent behavior of impurity ions, depend i n  d e t a i l  on acoust ic  

phonons and t h e i r  in te rac t ion  with each other  and wi th  the  e lec t ronic  

p a r t s  of the c rys ta l .  

of many technological devices. For example, i n  high frequency delay 

Also, t h e s e  techniques are an important pa r t  

l i n e s ,  i n  da ta  processing devices and i n  defect  detectors  f o r  sol ids .  (2) 

There are, therefore, both s c i e n t i f i c  and technological reasons f o r  

expanding and developing techniques and methods f o r  the  generation and 

detect ion of acoustic phonons i n  solids. 

Two of the  most important methods used t o  generate and de tec t  

coherent acoustic waves i n  so l id s  depend on the  e f f e c t  of an applied 

e l e c t r i c  f i e l d  on the e l a s t i c  and d i e l e c t r i c  behavior of the solid.  

These e f f ec t s  can be described by the following two equations, 

(1 1 kdpEC 
= CE + dcE - 

(2) 
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Equation (1) relates the  stress, Q, t o  t he  s t r a i n ,  E, and t o  the  e l e c t r i c  

f i e l d  E and Eq. ( 2 )  relates the dipole moment per  u n i t  volume, P, t o  the  

same two quantities. These quantit ies,  Of course, are time and pos i t ion  

dependent when used t o  describe the  generation and detect ion of acoust ic  

waves i n  solids.  

behavior of sol id  i n  terms of t he  e l a s t i c  constant, c, while the  f irst  

term i n  Eq. (2) represents t he  po la r i zab i l i t y  of t h e  s o l i d  i n  terms of the 

polar izabi l i ty  constant X. 

and (2)  represent respectiyely,  the p iezoe lec t r ic  and e l e c t r o s t r i c t i v e  

e f f e c t s  and are  given i n  terms of the  p iezoe lec t r ic  constants, d, and the 

e l ec t ros t r i c t ive  o r  photoelast ic  constants, p. The constant k i n  these 

equations i s  t h e  ordinary d i e l e c t r i c  constant. It i s  t o  be noted the 

summation i n d i c e s ,  which would be expected t o  appear i n  Eqs. (1) and (2 )  

and are required because of t h e i r  tensor  character, have been suppressed 

f o r  simplicity and physical c l a r i t y .  ( 3 )  

f o r  phonon generation. It gives the stress that i s  induced i n  a c r y s t a l  

due t o  a n  applied e l e c t r i c  f i e l d  and i f  t he  e l e c t r i c  f i e l d  is time 

dependent, t he  induced stress can a c t  as t h e  dr iving force f o r  i n i t i a t i n g  

an acoust ic  wave. Equation (2)  which i s  the basic equation f o r  detect ion 

rezates the  induced dipole moment t o  s t r a in .  Therefore the s t r a i n  due 

t o  a n  e l a s t i c  wave can be measured e l e c t r i c a l l y  via the induced dipole 

moment. 

electrostrictive e f f e c t  can be used t o  i n i t i a t e  and  de tec t  a n  acoust ic  

phonon. 

The first term i n  Eq. (1) represents  the  e l a s t i c  

The second and t h i r d  terms of both Eqs. (1) 

Equation (1) i s  the  basic  equation 

These equations indicate  t ha t  both the  p iezoe lec t r ic  and the 



Piezoelectric Method -- This method is  the most common one used 

A t  frequencies of about 100 MHz and below, f o r  Generation and detection. 

the method takes the form of quartz transducers for  both i n i t i a t i n g  and 

receiving the acoustic wave. (4) 

bonded onto the sample. 

across the transducer which results i n  a wave being i n i t i a t e d  in to  the 

sample; f o r  detection, the ac  e l ec t r i c  potent ia l  induced across the t r a n s -  

ducer from the acoustic wave passing in to  the transducer i s  measured. 

In the  frequency range of about WO V I Z  t o  100 GHz bulk quartz transducers 

become very inef f ic ien t .  Tnerefore a t  these frequencies fo r  piezoelectric 

samples, the acoustic wave i s  ger,erated by surface exci ta t ion of the  sample 

In t h i s  case the quartz transducer i s  

For generation, an ac e l e c t r i c  potent ia l  i s  applied 

itself; f o r  non-piezoelectric samples, t h in  f i l m  transducers are used . (:.I 
The upper frequency l i m i t  t o  the piezoelectric techniques i s  about 100 GHz 

and t h i s  i s  set by the lack of coherent electromagnetic wave generators 

above t h i s  frequency. A t  a time when far-infrared lasers are developed 

f o r  frequencies above 100 GHz, th in  f i l m  piezoelectric techniques w i l l  

probably be used i n  t h i s  high frequency region. 

Elec t ros t r ic t ive  Method -- The th i rd  terms of Eqs .  (1) and ( 2 )  

describe the basis  f o r  t h i s  method. 

d i f f e ren t  e l e c t r i c  f i e l d s  are applied t o  a crystal ,  one with frequency 

Equation (1) implies that i f  two 

and the  other with w2, then a stress w i l l  be produced a t  the difference w1 

frequency (wl - 02). 
i n  a c rys ta l  w i l l  i n i t i a t e  a n  acoustic wave with a frequency given by the 

difference frequency of the  applied f i e l d s .  I n  t u r n ,  Eq. ( 2 )  implies that 

if a s t r a i n  is  present i n  a crystal ,  varying a t  a frequency of 0, and ari 

That is, the superposition of two e l e c t r i c  f i e lds  
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e l e c t r i c  f i e l d  is  applied with frequency w, then a dipole moment w i l l  be 

induced i n  the crys ta l  a t  frequencies of w f R. It is t h i s  e f f ec t  which 

allows an acoustic wave t o  be detected through the e l ec t ros t r i c t ive  (or  

photoelastic) effect .  

transparent crystal .  

the  c rys ta l  and across the acoustic wave, a dipole moment w i l l  be induced 

a t  a l l  points common t o  the l i g h t  and acoust ic  wave. This induced dipole 

moment can i n  t u r n  generate an opt ica l  wave a t  the  frequencies w f R 

and t h i s  wave, when detected w i l l  indicate  the presence of the acoustic 

wave i n  the crystal .  

years f o r  detecting and measuring the propert ies  of acoustic waves i n  

Solids ( 6 )  For example, the second and t h i r d  order e l a s t i c  constants of 

(7 )  Also the cer ta in  c rys ta l s  have been obtained using t h i s  technique. 

first detection of coherent waves i n  the GHz region was carr ied out by 

this technique. ( 8 )  

incoherent thermal waves i n  Bril louin and Raman sca t te r ing  experiments. 

There have been a f e w  experiments which have used t h i s  method f o r  

generating coherent acoustic phonons. 

t i o n  of stimulated Bril louin sca t te r ing  i n  sol ids .  ( l o )  

a ruby l a se r  beam is focussed in to  a transparent sample; t h i s  beam 

i n t e rac t s  with the thermal acoustic waves t o  generate a scat tered l i g h t  

wave which i n  tu rn  a l s o  i n t e rac t s  with the or ig ina l  l ight  wave t o  generate 

new acoustic phonons. 

acoustic phonons and the shifted frequency l i g h t  beam. I n  another 

experiment part of a He-Ne l a s e r  beam was sh i f ted  i n  frequency by 

That is, suppose a n  acoust ic  wave is  present i n  a 

If a l igh t  (electromagnetic) wave is  sent  through 

The e l ec t ros t r i c t ive  e f f e c t  has been used for  many 

This method i s  a l so  the basis of detect ing the  

( 9 )  

One of these was the first observa- 

In t h i s  experiment 

This process results i n  a build-up of both the 

I 
1 
1 
I 
I 
1 
I 

1 
1 

i 
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in te rac t ing  with acoustic wave generated by transducer techniques a t  

f;?Q HEz. This freqiicncji siiified beam is, i n  turn, mixed wi th  the or ig ina l  

laser beam, i n  a c rys t a l  t o  generate through e lec t ros t r ic t ion ,  a n  acoustic 

wave a t  500 MHz. 

It was the purpose of the pmsen t  study t o  develop techniques 

f o r  generating and detecting acoustic waves above the  100 GHz leve l .  The 

most promising method appeared t o  be through the e l ec t ros t r i c t ive  e f fec t .  

It was ant ic ipated that the detection could be handled by using v i s ib l e  gas 

laser l i n e s  (He-Ne o r  argon lasers) and interferrometer or  monochromator 

frequency resolut ion f o r  observing the scattered frequency sh i f ted  opt ica l  

l i n e s .  

CO laser. 

The most promising source for generation appeared t o  be the Q-spoiled 

The data that was available (12) indicated that the laser would 2 

give a whole series of l i n e s  around lop (lo00 cm'l) with approximately equal 

spacing of about 2 crn'l. 

erated a t  multiples of about 60 GHz, i.e., a t  60 GHz, 120 GHz, 180 GHz, e tc .  

This would. mean t h a t  acoust ic  waves could be gen- 

Therefore, the immediate objectives of t h i s  project  were 

(1) t o  develop techniques and  experience i n  detect ing GHz acoustic waves 

by the e l e c t r o s t r i c t i v e  e f f e c t  and (2)  t o  develop a &-spoiled CO laser 

that would y ie ld  the  required power for generation. 

present the progress that has been made d u r i n g  the f irst  year of  the present 

contract  toward the above objectives. 

2 

This report  w i l l  

Theoretical work done under t h i s  contract  concerned w i t h  acoustic 

wave at tenuat ion i s  i n  the form of a paper t i t l e d  '9ecay of High-Frequency 

Longitudinal Phonons" by P.G. Klemens and i s  included i n  t h i s  report  a s  

Appendix I. 
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11. GENERATION 

Theory -- The bes t  way t o  discuss the generation of acoust ic  
cI_ 

waves by means of the e l ec t ros t r i c t ive  e f f e c t  is t o  return t o  Eq. (1) 

and rewr i te  it t o  include only the e l e c t r o s t r i c t i v e  term, i.e. 

2 = B x  k2p (E 1 + E2) ( 3 )  

where E and E 1 2 
magnetic waves. 

represents the e l e c t r i c  f i e l d s  of two d i s t i n c t  e lectro-  

These f i e l d s  would be given individually by 

g1 r )  E~ - - e s i n ( w l t  - 
1 

and 

E2 - - e 2 s i n ( w  2 t - X 2 * r )  Y 

where w and w are  the frequencies and K and K are  t h e  wave vectors 

of the respective waves. It i s  assumed f o r  s implici ty  t h a t  E and E 

a r e  paral le l .  

1 2 -1 -2 

2 1 
Then the component of u tha t  o s c i l l a t e s  a t  the difference 

frequency, (9 - w ), i s  given by 2 

,-. 
(4) 

The s t ress  given by Eq. ( 4 )  now becomes the driving term f o r  a n  elastic 

w a v e  equation, i.e., 
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where U i s  the loca l  pa r t i c l e  displacement, V the acoustic phase veloci ty  

i n  the  c rys ta l  and x the distance along the acoustic wave normal. 

must aga in  be pointed out that the present discussion is  somewhat qual i ta-  

t i v e  i n  that the tensor character o f  the quant i t ies  involved has been 

ignored and tha t  the above wave equation i s  somewhat simplified. 

cer ta in  conditions the driving s t r e s s  wave given by Eq. (4 )  can be mtched 

i n  phase velocity t o  an  acoustic wave i n  the crystal .  

t h i s  are, 

It 

Under 

The conditions f o r  

and 

where Q is  the frequency and q the  wave vector of a n  acoustic mode i n  

the crystal .  

wave w i t h  the above frequency and wave vector, then the s t r e s s  wave 

(Eq. 4)  over i t s  entire volume of action w i l l  a c t  as a spa t i a l ly  coherent 

source for  t h i s  acoustic wave. 

coherent generation can only occur when the acoustic wavelength is  smaller 

o r  of the order of the opt ica l  wavelength i n  the crystal .  

studies(10y11) which were referred t o  i n  the Introduction of t h i s  report, i n  

which the  e l ec t ros t r i c t ive  e f f ec t  is employed f o r  generation, depended on t h i s  

This means that if the c rys t a l  can support a n  acoustic 

It i s  c lear  t h a t  t h i s  case of spa t i a l ly  

The two 
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type of spa t i a l  coherence. 

waves a re  t o  be used f o r  generation, these conditions cannot be m e t  

because the opt ica l  wavelength i s  la rge  i n  comparison t o  the acoustic 

wavelength. Even though these conditions cannot be satisfied, t h e  stress 

given by Eq. ( 4 )  can s t i l l  a c t  a s  a dr iving source f o r  generation a t  the 

surface of the crystal .  

in to  a crys ta l  a t  a common point on i t s  surface, these waves w i l l  i n t e r a c t  

a t  the surface, because of the discont inui ty  i n  the photoelastic constant, 

t o  yield a driving force a t  the surface that  w i l l  i n i t i a t e  the acoustic 

wave. The s t r e s s  wave given by Eq. (4)  w i l l  s t i l l  e x i s t  inside the  c rys t a l  

but i t s  net e f f ec t  w i l l  be zero. The wave equation w i t h  surface exci ta t ion 

i s  given by 

I n  the Present case where infrared op t i ca l  

This means that i f  two op t i ca l  waves a re  sent  

2 6(x)k pe e - 1 - - -  a2u a2u 
=I 

v2 at2 ax2 6YTC 
COS(W, - w 2 ) t  , 

where 6(x)  is the Dirac de l t a  function and it i s  assumed that the two 

l i g h t  waves a re  incident on the x = 0 plane. The s t r a i n  amplitude of 

the acoustic wave that i s  i n i t i a t e d  a t  the surface i s  then given by 

2 k pe e 
BfiC 
1 2  E : =  . 

This can be wri t ten as 

E =  k2pF x 10 7 , 
2c cJ A 
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where F is  the laser power (Watts) i n  each of the two l i n e s  that  are 

being mixed, A i s  the  area (cm’) of t he  laser beam on the c rys t a l  surface, 

and c 

power i s  10 m, that the laser beam i s  focused t o  a spot s i ze  of 

(0.03 mm square), and w e  take the  e l a s t i c  constant, cy t o  be equal t o  

5 x 10” dynes/cm , the  photoelastic constant, p, t o  be 0.3 and the 

d i e l e c t r i c  constant, k, t o  be 3, then the s t r a i n  is  

is  the veloci ty  (cm/sec) of l i g h t .  If we assume that the laser 1 

cm2 

2 

2 This corresponds t o  an  acoust ical  power density of abou t10  mw/cm . It 

is  evident, therefore, that if the laser power i s  of t he  order of 10 Kw 

f o r  the individual C02 l i n e s ,  then a f i n i t e  s t r a i n  wave can be i n i t i a t e d  

at the surface of a crystal .  

C02 Laser Tube -- The theory of the laser and, i n  par t icular ,  

the  theory of the  C021aser w i l l .  only be discussed qua l i ta t ive ly  since 

both subjects a r e  adequately covered i n  the  literature. ( ’ 3 ~ 1 ~ )  

i s  a n  opt ica l  o sc i l l a to r  capable of yielding coherent op t ica l  power. 

two essential pa r t s  of a laser are  (1) a medium t h a t  has power g a i n  a t  

opt ica l  frequencies and (2)  a means f o r  feedback a t  these opt ica l  

frequencies. 

e i t h e r  i n  a gas o r  so l id  phase, which have, as a whole, a non-equilibrium, 

population inversion of t h e i r  energy leve ls .  

can lead t o  power g a i n  f o r  a n  electromagnetic wave through stimulated 

emission. 

medium in to  a n  osc i l l a to r .  

The l a s e r  

The 

The amplifying medium can consis t  of ions, atoms o r  molecules, 

This inverted population 

Optical mirrors act as the feedback which t u r n s  the amplifying 
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It i s  the C02 molecule which has some of i t s  v ibra t iona l  energy 

leve ls  inverted tha t  gives the required op t i ca l  gain f o r  the co 

In  t h i s  case a n  e l e c t r i c a l  discharge a c t s  as the invert ing pump. Nitrogen 

and helium are  added t o  the discharge t o  enhance the inversion of the C02 

levels .  

laser. 2 

A l a s e r  can be operated either as steady state o s c i l l a t o r  o r  

The &-spoiled laser i s  a type of pulsed laser as a pulsed osc i l l a to r .  

where the feedback is suddenly turned on wi th  the result that the 

osc i l la t ions  build up t o  a very high leve l .  

t u r n  on makes use of a ro ta t ing  mirror. This i s  the method that has been 

One common method fo r  feedback 

used f o r  Q-spoiled C 0 2  l a se r s .  (15) 

The important objective of t h i s  pa r t  of the program was t o  

construct a &-spoiled C02 l a s e r  that would de l iver  Q-spoiled pulses made 

up of individual C02 laser l i n e s  each with peak powers as la rge  as possible. 

While available data from other invest igators  indicated t h a t  t o t a l  

peak powers of the order of a t  least 50 K h  could be realized, there w a s  

no data at the start of t h i s  program on the  d i s t r ibu t ion  of t h i s  energy 

among the  various CO laser l i n e s .  2 

The first laser tube that was constructed was made up of 4" I.D. 

pyrex pipe with concentric water jackets of f iberg lass  tubing bonded t o  

the pyrex with epoxy r e s i n .  

and used 3" dim. mirrors i n t e r n a l  t o  the discharge tube. This tube was 

operated only i n  a continuous mode and delivered the order of 100 watts. 

The l eng th  of the ac t ive  discharge w a s  8 f t .  

It was decided tha t  a smaller diameter tube would be more 

su i tab le  f o r  Q-spoiled operation. This tube i n  i t s  f inal  form is  shown 



- 11 - 

schematically i n  Fig. 1. 

tube is  constructed of PFex  Pipe, b u t  now with a 2" I.D. The water jackets 

are formed by using commercial fiberglass tubing bonded and sealed t o  the 

outs ide of the pyrex pipe wi th  epoxy r e s i n .  Th i s  tube i s  made up of four 

sect ions of 4 ft 

i n  the middle. 

A t  each end, the  p p e x  pipe i s  expanded in to  a l a rge r  diameter so as t o  

accommodate the  mirror mounts. The tube i s  pumped a t  one end and the Gas 

i s  fed i n  a t  t he  other. 

pump. 

the CO and N as was evident from the var ia t ion  i n  discharge color alonz 

the  length of the  tube. 

pump which resulted i n  a much more uniform discharge and i n  a somewhat 

higher output. The mirror mounts a t  one end were constructed so t n a t  

ei ther a fixed mirror or  ro t a t ing  mirror could be mounted. 

a t  the other  end was fixed and was concave with a radius of curvature 

equal t o  the length of the  tube. 

configuration when the  ro ta t ing  mirror was plane. This configuration 

w a s  convenient i n  t h a t  only a small (1/2" x 1/2") ro ta t ing  mirror was 

required. The mirrors were fabricated of quar tz  with gold r e f l ec t ing  

coatings. The output was obtained by aperture coupling through t h e  

center of the  permanent mirror and the  output was passed out of the tube 

through an Irtran IV window. 

from high pressure (Airco) tanks through var iable  (Granville-Phill ips ) 

Figure 2 shows a photograph of the tube. The 

long pipe w i t h  three electrodes, one on each end and one 

This yie lds  an active discharge length of 16 ft. ( 5  meters). 

3 I n i t i a l l y  the tube was pumped wi th  one 15 ft /min 

This pumping rate was not f a s t  enough t o  prevent decomposition of 

2 2 
3 The smaller pump was replaced by f t  /min 

The mirror 

This gave a hemispherical l a s e r  cavity 

The three gases, C02,  N2 and He,  were fed 
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leaks i n t o  the tube. 

and Tierman precision pressure d i a l  @We. 

was obtained from a f u l l  wave r ec t i f i ed  three phase supply. 

could deliver UP t o  15 KV a t  100 m a  and was controlled by three ganged 

Variacs. 

t he  center electrode acted as a common cathode f o r  the two anode electrodes 

a t  the ends of t h e  tube. The ballast resis tance i n  each discharge l e g  

was 4.0 K.Q. 

This tube gave t h e  order of 200 watts i n  CW operation. 

The pressure i n  the tube was measured by a Wallace 

The Dc power f o r  the discharge 

The supply 

The discharge was operated as two p a r a l l e l  sections; t h a t  is, 

Table I gives the important charac te r i s t ics  of the discharge. 

I n  the  f i r s t  t r y  a t  Q-spoiled operation, a 60 cps motor was 

This arrangement gave a used f o r  rotat ing a square, four-faced mirror. 

240 sec’l pulse repe t i t ion  rate. 

pulse was found t o  be made up of two or  three smaller pulses, each with 

r iset imes of the order of 1-2 ps. This  indicated t h a t  the 60 cps ro ta ry  

speed was too slow. 

a l l  the  m u l t i p l e  pulses disappeared, and the r i s e  time was decreased t o  

the order of 0.1 ps. Table I1 gives some of the l a s e r  charac te r i s t ics  

when operated a t  the 400 sec’l pulse repe t i t ion  rate. 

pulse was obtained by measuring the average power with a Westinghouse l a s e r  

calometer and dividing t h i s  number by the known pulse r epe t i t i on  ra te .  

The peak power i n  a simple pulse was obtained from the energy per pulse 

and from the pulse width as measured by a Ge-Au photoconductive ce l l .  

Figure 3 gives a drawing of a typ ica l  Q-spoiled pulse a s  taken from a n  

oscilloscope photograph. 

A t  t h i s  speed of rotat ion,  the t o t a l  

A 400 cps motor was ins t a l l ed  and as a result almost 

The energy per 
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Table I 

DISCHARGE CHARACTERISTICS 

Discharge current 

He pressure 

N pressure 

CO pressure 

Pumping speed 

Discharge length 

Discharge diameter 

2 

2 

70 m a  

4 Torr 

1 Torr 

0.3 Torr 

50 ft’/min 

16 f t  

2 i n  

Table I1 

&-SPOILED LASER CHARACTERISTICS 

Cavity configuration Hemispherical 

Energy per  pulse 20 mjoule 

Pulse rate 400 sec‘l 

Pulse width 0.2 ps 

Total. peak power 100 Kw 

Number of strong l i n e s  10 
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It is  t o  be noted t h a t  while the rise time of the pulse as 

given i n  Fig. 3 i s  close t o  t h e  t rue  r ise time, t he  fall time is  l imited 

by the time constant of t he  measuring c i r c u i t  and i s  therefore somewhat 

longer t h a n  t he  true f a l l  time. 

shown i n  Fig. 4. 

conjunction wi th  a rad ia t ion  thermopile. 

made up of two groups of l i nes .  

and the second group has a spacing of 1.8 an-’. 

while the first group i s  reasonably well resolved, the second group j u s t  

gives a h i n t  of i t s  l i n e  s t ructure .  

of the monochromator that was used f o r  t h i s  measurement. It can be seen  

t ha t  there  are about 10 strong l i n e s .  

l i n e s  spaced a t  1.8 cm’l o r  54 GHz that were used, as described i n  the 

next section, f o r  a first t r y  a t  generation and detect ion of 54 GHz phonons. 

The resolved spectra  of laser output i s  

This was obtained w i t h  a N a C l  prism monochromator i n  

It i s  seen that the spectra  i s  

-1 The f i rs t  group has a spacing of 2 cm 

It i s  t o  be noted that 

This i s  due t o  the  f i n i t e  resolut ion 

It is  t h e  group with 

Future Plans -- There are many aspects  of the &-spoiled laser 

tha t  need further work and development. The most e s s e n t i a l  i s  t o  increase 

the  peak power, e i t h e r  by decreasing the pulse width o r  increasing the 

energy per pulse .  The energy per  pulse can, i n  pr inciple ,  be increased 

by making the laser tube longer. 

pulse width. The dependence of these quant i t ies ,  i.e., pulse width and 

energy, on such parameters as the ro t a t ion  speed of the Q-spoil mirror, 

the length of the  laser and the amount of output coupling need further 

investigation. 

a laser osc i l l a to r  p lus  an amplif ier  t o  obtain the required peak power. 

Also, more detai led work is  needed on the resolved spectra  of the Q-spoiled 

laser and how the length of the  laser tube a f f e c t s  t h i s  spectra.  

However, t h i s  may also increase the 

Another avenue that should be invest igated i s  the use of 
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111. DETECTION 

Simple Theory 

The d i f f rac t ion  of l i g h t  by acoustic waves i n  transparent so l ids  

and l i q u i d s  is not a new technique as was mentioned i n  Section I. 

the  advent of the  laser and improved experimental techniques f o r  generating 

acoustic waves i n  the microwave range, there  has been renewed i n t e r e s t  i n  

t h i s  interact ion.  The d i f f rac t ion  of l i g h t  by coherent acoustic beams i n  

so l id s  is especial ly  strong f o r  a par t icular  angle of incidence and 

sca t te r ing  angle of the l i g h t  beam re la t ive  t o  the sound wave propagation 

Since 

vector q. The par t icu lar  angle  of incidence 8 

f o r  t he  sca t te r ing  of l i g h t  by acoustic waves. 

is cal led the Eiragg angle 

Since the theory of 

1 - 

Bragg angle sca t te r ing  has been w e l l  covered i n  the l i t e r a t u r e  recently, (16,171 

only a br ie f  sketch of the theory w i l l  be presented here. 

The model f o r  the discussion is  shown i n  Fig. 5. The longitudinal 

acoust ic  wave propagation vector and frequency a re  q and R respectively, 

and the  incident l i g h t  i s  denoted by i t s  propagation vector K. and 

frequency w . .  

are incident a t  an  angle 8 Since f o r  i - 
most materials the  veloci ty  of the acoustic wave (10 5 t o  10 6 cm/sec) i s  

-1 

Two rays of t he  l i g h t  beam, rays 1 and 2, a r e  shown and 
1 

re la t ive  t o  the q vector normal. 

much l e s s  than  the veloci ty  of l i g h t  i n  the medium (10 9 t o  l o l o  cm/sec), 

the  acoust ic  wave f ron t s  can be thought of as s ta t ionary during the  time 

the l i gh t  rays pass through the acoustic disturbance. 

unshaded areas i n  Fig. 

The shaded and 

very schematically represent the d i f fe ren t  
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index of refract ion regions caused by the s t r a i n  produced by the  acoustic 

wave. For the case where the acoustic wave f ronts  a r e  thought of as being 

stationary,  Ql = G2. And, f o r  par t icular  values of K.  and q there  i s  a n  -1 - 
angle of incidence 

231 upon emerging from the acoustically disturbed region. 

O1 =: 9B such that ray 1 and ray 2 d i f f e r  i n  phase by 

That i s  when 

the  wavelength of sound A s ,  the  wavelength of l i g h t  i n  the medium hi, 

and the  incident angle  8 s a t i s f y  the equation B 

> 
'i s i n  d = - 

B 2hS 

then the scat tered l i g h t  due t o  rays 1 and 2 in te r fe re  constructively. 

This can be seen eas i ly  by showing t h a t  the opt ica l  path difference 

(ab + bc) between rays 1 and 2 i s  equal t o  the wavelength of l i g h t  i n  the 

medium when g1 = BB. 

i s  conserved during the sca t te r ing  process. This is  shown i n  pa r t  B o f  

Fig. fs. That energy i s  a l s o  conserved during the in te rac t ion  implies 

that the scat tered l i g h t  frequency must d i f f e r  from the incident l i g h t  

frequency by the acoustic frequency. The frequency s h i f t ,  however, i s  a 

consequence of the acoustic velocity V . 
thought of f o r  the simple model of Fig. 

due t o  the f i n i t e  veloci ty  of t h e  acoustic waves.) 

s t r i c t e s t  sense Eq. (?), which ignores V 

was mentioned above. 

good one when it i s  desired t o  calculate the  Bragg angle from the simple 

The s i tuat ion can be s ta ted  by saying that momentum 

(The frequency s h i f t  can be 
S 

as  a r i s ing  from a Doppler s h i f t  

Therefore, i n  the 

i s  only an  approximation as 
S' 

But the approximation inherent i n  Eq. ( 3 )  i s  a 
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model of Fig. x. 
show that there i s  a par t icu lar  a n & ?  of incidence of l i g h t  r e l a t ive  

t o  the acoustic column which leada t o  a reinforced, frequency shifted,  

The above ideas considered with Fig. 5 are simple and 

scat tered beam of l i gh t .  

Acoustic Frequency Range Considerations 

According t o  Eq. ( 5 )  reinforced sca t t e r ing  can occur as long a s  

i s  less t h a n  o r  equal t o  one. > 1, reinforced 'i For values of - 'i 

% as 
- 
sca t te r ing  from many acoustic waves cannot take place. 

acoustic frequency n 

the  wavelength of l ight  used t o  detect  them. 

x-cut quartz (Vs = 5.72 x 10' cm/sec), ( d l  RB = 27.8 GHz, and f o r  

longitudinal waves i n  a-cut sapphire (Vs = 11.03 x 10 

nB I= 6l.5 GHz. Both of these values a re  s ta ted  f o r  h = 6328 a i n  air. 

Tne upper l i m i t  

depends on the veloci ty  of the acoustic waves and 

For longi tudinal  waves i n  
B 

5 (18) an/sec), 

i 

It i s  t r u e  that f o r  most materials n i s  much less t h a n  10l1 Hz. Since B 

it i s  desired t o  use the light-sound interact ion t o  eventually detect  

acoustic waves wi th  frequencies up t o  1Ol2 Hz, methods of detection 
I 

must be discussed which do not involve Bragg scat ter ing.  

the differences between Bragg sca t te r ing  a t  frequencies much less than 

R and frequencies near R e i the r  under o r  over, both regions w i l l  be 

considered separately. 

To appreciate 

B B' 
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B Experiment < Q 

Equipment -- The experimental arrangement f o r  Bragg angle 

sca t t e r ing  i s  shown i n  Fig. 6. 

modified Perkin & Elmer  He-Ne laser. 

1 / 2 I t  t h ick  invar plate ,  which served as a base, and new mirror mounts 

spec ia l ly  designed f o r  r i g i d i t y  and ease of alignment. 

was s l i g h t l y  less than 1 meter i n  length and power outputs 7;ere between 

The laser used i n  all of t h i s  work was a 

The modifications consisted of a 

The laser cavi ty  

1 and 10 m depending on the  age of t he  plasma tube and the  mode pa t te rn  (19 1 

i n  which the  laser was operating. 

cons is t s  of a 1/4 wave p la t e  and polar izer  and prevents any back-scattered 

l i g h t  from in t e r f e r ing  with the  operating of t he  laser. Tne sample holder 

was mounted on a ro t a t ing  t ab le  which allowed absolute se t t i ngs  t o  within 

0.1' and ro ta t ions  f i n e  enough t o  mechanically scan angular regions of 

0.05O extent. 

undiffracted laser beam and the  Bragg d i f f rac ted  beam. 

as indicated i n  Fig. 6, with a mirror and beam s p l i t t e r .  

these beams, o r  both, were sent i n t o  a photomultiplier, and the  mul t ip l ie r  

output w a s  fed  in to  a scope when the acoust ic  waves were i n  the  form of 

pulses, o r  i n to  a DC p-ammeter, when t h e  acoust ic  waves were C.W. 

Fabry-Perot interferrometer (19) was sometimes placed between the sample 

and the  photomultiplier f o r  reasons which w i l l  be discussed la te r  when 

the  frequency range R 'V RB i s  considered. The set-up shown i n  Fi?. 6 

was used f o r  acoust ic  frequencies between 0.9 and 3.0 GHz. 

The op t i ca l  i s o l a t o r  shown i n  Fig. 6 

Provisions were made t o  observe the "s t ra ight  through" 

This was done, 

Ei ther  one of 

A 
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Sample Considerations -- The samples used i n  the low frequency 

Bra% sca t te r ing  experiments were 1/4" square cross-sectional pieces of 

quartz and sapphire. The sample lengths varied from 0.3 cm t o  almost 

4 cm. 

wave. 

t o  the end faces t o  within 15 minutes of arc,  and f la t  t o  1/10 waves. 

Most of the samples used i n  th i s  work were supplied by the Valpey Corp. 

The end faces were pa ra l l e l  to  10 seconds of a r c  and f l a t  t o  1/10 

The long side faces were pa ra l l e l  t o  15 seconds of arc,  perpendicular 

It i s  very important that the long side faces be opt ica l ly  f lat  

and clean. As can 

separated i n  angle 

beams are ac tua l ly  

be seen from Fig. 6, the d i f f rac ted  beam of l i g h t  i s  

(- 28 ) from the main laser beam. 

separated depends i n  part on the qual i ty  of the surfaces 

How well the two B 

through which the laser beam passes. 

op t i ca l  quality, pa r t  of the l a s e r  beam w i l l  be scat tered in to  the direct ion 

where Bragg sca t te r ing  i s  being observed and ser iously a f f e c t  the overal l  

signal-to-noise r a t io .  

f i n i s h  i n i t i a l l y ,  but they were a l s o  cleaned repeatedly during measurements. 

If these surfaces a re  not of high 

Not only were the samples given a good opt ica l  

Acoustic Power and Diffracted Light Powers -- The f rac t ion  of 

l i g h t  d i f f rac ted  by the acoustic waves i s  d i r ec t ly  proportional t o  the 

acoust ic  power. Therefore, some time w a s  spent i n  t ry ing  t o  increase the 

acoust ic  powers i n  the samples. Init ial  work w i t h  quartz samples a t  1 GHz 

w a s  done with high Q,-microwave cavi t ies .  Because quartz i s  piezoelectric,  

acoust ic  waves were generated d i rec t ly  under the act ion of the microwave 

e l e c t r i c  f ie ld  present i n  the cavity. 

shown i n  Fig. 6) was a planar tr iode cavi ty  o s c i l l a t o r  which put out 1 kw 

The microwave t r a n s m i t t e r  (not 
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peak power i n  1 p-sec pulses. 

400 and 1000 Hz. 

quartz samples during the acoustic pulse using the above technique, was 

of the order of 10” and corresponded t o  peak acoustic powers of about 

1 m/cm . 
i s  

I n  order t o  appreciate the f a c t  that a measurement of the f rac t ion  of l i g h t  

diffracted can give a d i r ec t  measurement of acoustic power i n  some samples, 

the relationship between the d i f f rac ted  l i g h t  in tens i ty  I+ the incident 

l a s e r  intensi ty  Io, and the sample parameters must be discussed. It can 

be shown (I6) t h a t  

Repetition rates were usually s e t  between 

The fract ion of l i g h t  diffracted by x-cut and z-cut 

2 (This does not imply t h a t  the rf t o  acoustic power efficiency 

for the sample f i l l i n g  fac tor  was only of the  order of 

where K.  i s  the propagation vector of incident l i g h t  i n  the medium i n  

cm’l, n i s  the  index of refraction, and Pac i s  the  acoustic power i n  

erg/sec-cm . 
constants respectively. I n  Fig. 5, i f  the  d i rec t ion  of - q i s  taken as t‘ne 

x-axis then the appropriate e l a s t i c  constant i s  cll, and since the l i g h t  

i n  the  sample was always polarized perpendicuiar t o  the x-axis, the 

1 

and c a re  the appropriate photoelastic and e l a s t i c  2 
’ij j j  

appropriate photoelastic coeff ic ients  f o r  most of our work a re  pZI and 

Using Eq. (6) and the relat ionship between acoustic power and p3J-* 
s t r a i n  

I 
I 
i 
I 
1 
I 
I 
I 
3 
I 
I 
I 
1 
1 
I 
I 
I 
1 
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1 2 Pac = - v c 2 s 11 €1 ’ ( 7 )  

the  re la t ionship  between I and s t r a in  can be obtained. For x-cut 

quartz containing longitudinal waves t rave l ing  along the x-axis, 

1 m/cm of acoustic power corresponds t o  a s t r a i n  of 2.1 x 10-7. 

ID/ 0 

2 

Some Results -- I n  order t o  increase the r a t i o  $,/Io, t h i n  film 

CdS transducers (20) were deposited on one end of the  samples and it was 

found by measurement that acoustic powers greater t h a n  10 m/cm 

obtained. 

and a CdS transducer was used on the end of an x-cut quartz sample. 

2 were 

Finally,  a composite film composed of a gold back-up electrode 

This 

composite film i s  shown i n  detail i n  Fig. 6. $,/Io values of 2 x 

were obtained during the acoustic pulse. 

acoust ic  powers of roughly 2 watts /cm2 and peak strains equal t o  1 x 

Acoustic powers of t h i s  order were obtained with composite f i l m s  i n  a 

few x-cut quartz samples and a z-cut quartz sample. 

i n  a-cut sapphire with a composite film yielded peak acoustic powers 

somewhat less t h a n  i n  quartz (0.01 to  0.1 watts/cm ). 

t r ace  of the  Bragg e f f e c t  i n  a 9 rmn long x-cut quartz sample a t  sound 

frequencies of 1 GHz i s  shown i n  par t  ( a )  of Fig. 7. 

composite film (gold + CdS) on one end, and the l i g h t  entered the sample 

3.3 rmn from the transducer. 

mul t ip l ie r  set a t  the correct  scat ter ing angle t o  see Bragg scat ter ing.  

The second s ignal  of the upper t race corresponds t o  the acoustic pulse 

t h a t  has been ref lected from the  free end of the sample (i.e., the end 

This r a t i o  corresponds t o  peak 

Using Bragg sca t te r ing  

2 An oscilloscope 

The sample had a 

The upper t race  is the output of a photo- 



2 U-sec 
5v/cm, cm 

Fig. 7a-Upper Trace. Bragg effect for longitudinal waves 
in x-cut quartz, R = 1 GHz 

Lower Trace. Conven tiona I p u  Ise-ec ho pattern 

2 r s e c  
crn 50 mv/cm, 

Fig. 7b-Upper Trace. Bragg effect for 2nd harmonic wave 
in x-cut quartz 

Lower Trace. Pulse-echo pattern$ = 1 GHz 
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away from the transducer).  

Tne lower t r ace  i n  Fig. 7a is  the  pulse echo pa t te rn  using conventional 

microwave equipment. The first pulse i s  the  transmitter pulse while t he  

rest  of the  pulses are echoes. 

was turned up i n  t ne  first t race  of p a r t  (a)  all of the  echoes a re  v i s i b l e  

via t h e  scat tered l i gh t .  

t h e  second harmonic acoustic wave generated i n  the  sample of p a r t  (a).  

Between pa r t  (a )  and p a r t  (b)  only a 

t h e  amplitude of t he  second harmonic s ignal  can lead t o  information 

concerning the  t h i r d  order e l a s t i c  constants, more work w i l l  be done i n  

t h i s  area shortly.  

than 1 GHz but the  Bragg e f f e c t  was seen i n  x-cut quartz f o r  acoust ic  

frequencies up t o  3 GHz. 

?"ne measured %/Io f o r  t h i s  sample was 0.02. 

It should be pointed out that i f  the  gain 

Par t  (b)  o f  Fig. 7 shows t h e  Bragg e f f e c t  f o r  

was changed from -3' t o  6'. Since B 

Photos are not shown f o r  acoust ic  frequencies higher 

High Frequency Considerations 

I 
8 
I 
1 
I 
O 
I 

The most important feature  of low frequency Bragg scat ter ing,  

when considering signal-to-noise, i s  that t h e  frequency-shifted, scat tered 

l i g h t  beam i s  s p a t i a l l y  separated from the  main laser beam as i s  indicated 

i n  Figs. 5 and 6. Bragg sca t te r ing  f o r  frequencies below R but  c lose 

t o  it presents cer ta in  problems caused by t h e  high at tenuat ion coef f ic ien t  

Q which most substances exhib i t  a t  room temperature and high acoust ic  

frequencies. To appreciate some of the  d i f f i cu l ty ,  an a-cut sapphire rod 

containing 34 GHz longi tudinal  acoustic waves w i l l  be considered. 

measured at tenuat ion coef f ic ien t  for longi tudinal  waves i n  a-cut  sapphire  

B 

The 
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is  0.2 db/cm at  room temperature and 1 GHz. "') Since a goes up l i k e  

the frequency squared, i t s  Value becomes 600 db/cm a t  frequencies of 

9 GHz. 
region of 0.1 mm away from the surface where it i s  generated. 

coupled with the f a c t  that the Bragg angle In  the medium for  9 GHZ 

longitudinal waves i s  about a', leads t o  the following complication. 

For normal. l a s e r  spot sizes,  it is impossible t o  sense the region containing 

the  acoustic waves and not h i t  the exc i ta t ion  surface itself w i t h  the  

l i g h t  beam. The specularly ref lected l i g h t  comes off a t  the same angle 

as the Bragg scattered l ight .  Therefore the Bragg d i f f rac ted  l i g h t  must 

be detected i n  the presence of a s igni f icant  f rac t ion  of the laser beam. 

That is, there i s  no s p a t i a l  separation between the d i f f rac ted  and undiffracted 

l i g h t  beam. A problem which must be solved experimentally then is  the 

separation of the small intensi ty ,  frequency shifted l i g h t  from the large 

in tens i ty  unshifted l i gh t .  

acoustic frequency, a n  instrument  such as a Fabry-Perot interferrometer 

o r  a high resolution monochromator must be used. 

ferrometer was used i n  t h i s  work. 

This means t h a t  most Of the  acoust ic  power is contained i n  a 

This fact ,  

Since the sh i f t  i n  frequency i s  equal t o  the 

A Fabry-Perot i n t e r -  

Fabry-Perot Interferrometer -- The Fabry-Perot was mounted on 

The separation between mirrors could be changed a, 1" thick invar base. 

mechanically with a d i f f e ren t i a l  screw drive o r  it could be changed by 

applying a voltage t o  a piezoelectr ic  drive mirror mount. 

the  mirror separation was set t o  10 cm. 

1.1 m radius, spherical  mirror, and the second mirror was a 93%~ re f lec t ing  

I n i t i a l l y ,  

One mirror was a 984'. ref lect ing,  

I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
1 
I 
1 
1 
e 
1 
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f la t .  Figure 8 shows the ax ia l  modes of the He-Ne laser. Off-axis modes 

were suppressed by using a s m a l l  aperture within the laser cavity and 

i n  f r o n t  of the Fabry-Perot. Figure 8 was obtained by sweeping the 

Fabry-Perot mirror separation by applying a 60 Hz sine wave t o  the 

p iezoe lec t r ic  drive element. The signal shown is  that from a photo- 

mul t ip l ie r  viewing the output of the Fabry-Perot (F.P.). 

Side Experiment -- To become accustomed t o  using the F.P. t o  

separate a beam of l i g h t  according t o  i t s  frequency, the following simple 

experiment was done with 1 GHz acoustic waves i n  x-cut quartz. A mirror 

was placed i n  the main l a s e r  beam a f t e r  it had passed through the sample 

containing a few mw/cm2 of c w  acoustic power. The mirror w a s  adjusted 

such that the main beam was s e n t  down the same path as the Bragg diffracted 

beam, and is  shown i n  Fig. 6. The beam s p l i t t e r  ref lected pa r t  of the 

d i f f r ac t ed  beam in to  the photomultiplier and allowed a large f rac t ion  

of the laser beam t o  pass through it after r e f l ec t ing  from the mirror. 

Then the  F.P. was placed between the beam s p l i t t e r  and the photomultiplier, 

and the  mirror separation of the F.P. was swept e lec t ronica l ly  while the 

output of the photomultiplier was put i n to  an oscilloscope. By placing 

neutral  density f i l ters  i n  the  l a se r  beam a f t e r  it had traversed the 

sample, it was found that the  shifted component could be seen i n  the 

presence of the unshifted l i g h t  when the in tens i ty  of the unshifted 

component was not more than  100 times greater than  the frequency shif ted 

component. That is, the F.P. used as a narrow band l i g h t  f i l t e r ,  centered 

a t  t n e  Bragg shifted frequency can at tenuate  the  unshifted l i g h t  by 20 db. 



Fig. 8-Fabry-Perot scan of axial laser modes of the 
He-Ne laser operating at A = 6328 A. The Fabry- 

Perot spacing was 10 cm 

RM-40160 1 
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Therefore, when the s m a l l  in tens i ty  frequency shifted l i g h t  and the la rge  

in tens i ty  unshifted l i g h t  are n o t  spa t ia l ly  separated as they w i l l  be i n  

the f i n a l  experiment t o  be described, the  F.P. can be used t o  attenuate 

the  in t ens i ty  of the unshifted beam by a fac tor  of 100. 

Final  Experiment -- A f t e r  the preliminary results described 

above, an attempt t o  de tec t  9 GHZ sound waves i n  sapphire was carr ied out. 

The experimental arrangement i s  shown i n  Fig. 9. 

i n  Section I1 was used t o  generate the acoustic waves. Since the co2 

laser is pulsed a t  400 Hz, it was f e l t  t h a t  there  would be a de f in i t e  

signal-to-noise advantage by synchronously detecting the output of the F.P. 

The C021aser described 

The F.P. mirror spacing was 1.55 cm which corresponds t o  a spec t ra l  range (a> 

of -9.7 GHz. Figure 10 shows the  unresolved laser modes when using the 

F.P. a t  t h i s  mirror spacing. Each s ignal  of the upper t r ace  is  composed 

of many l a s e r  modes. 

separation of the F.P. by a t  l e a s t  two spectral  ranges, two such s i g n a l s  

occur. The 3rd signal, f a r thes t  t o  the  r ight ,  corresponds t o  a mirror 

separation ident ica l  t o  that yielding the 2nd signal. The sinusoidal 

Since the scanning voltage changed the mirror 

voltage used t o  change the mirror separation is  shown i n  the lower trace.  

The frequency s h i f t  of the  Bragg d i f f rac ted  l i g h t  i s  54 GHz. 

Dlviding th i s  frequency by the spectral  range of the F.P. and disregarding 

integer  values of the spectral  range y ie lds  the  result that the Bragg 

shifted component should occupy a posit ion the same as would l i g h t  sh i f ted  

i n  frequency by 5.8 GHz away from the laser center frequency. 

shows the output of the F.P. as it i s  scanned over 1 spec t ra l  range, 

Figure lla 
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Fig. 10-Fabry-Perot scan of the  He-Ne laser light 
operating at A = 6328 A. The Fabry-Perot spacing 

was 1.55 cm 
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where the ve r t i ca l  l i n e s  marked "S" engulf one special  range. 

l la ,  the output of the photomultiplier i s  fed d i r ec t ly  in to  a Dc p-ammeter. 

The peak of the s ignal  corresponds t o  the center frequency of the laser 

l i g h t ,  and it can be seen t h a t  a t  a frequency 5.8 GHz away from the  laser 

frequencies the background l i g h t  i s  reduced s ignif icant ly .  

shows the 400 Hz noise inherent i n  the laser l i g h t  and Fig. l l c  shows the 

400 Hz signal  obtained when the C02 l a s e r  i s  allowed t o  h i t  the sapphire 

sample. A s  can  be seen, there  i s  a n e t  400 Hz signal. i n  the He-Ne laser 

l i g h t  which is  ref lected from the  back surface of the sample. 

determined that t h i s  net s ignal  was not frequency sh i f ted  by the acoustic 

frequency. Since sapphire absorbs the COS! l i g h t  strongly, t h i s  amplitude 

modulation of the ref lected laser l i g h t  is  probably caused by heating 

e f f e c t s  a t  the surface which d i s t o r t  the surface a t  the 400 Hz repe t i t ion  

For Fig. 

Figure l l b  

And, it was 

r a t e .  

f o r  samples which are transparent to  the CO 

This serious problem which ex i s t s  f o r  sapphire would not e x i s t  

l a s e r  l i g h t  (10.6p). 2 

That the heating e f f e c t  and laser noise destroy all hope of 

seeing the  Bragg e f f e c t  can be shown by the following calculations. 

will be assumed that the C02 spot size has an  area of 10 

It 

cm , t h a t  is  -5 2 

h2 w i l l  be taken as 10'' i n  Eq. (6). Ki w i l l  be taken a s  1.765 x 10 5 cm -1 

and a value of p - 0.3 w i l l  be assumed. A s t r a i n  of w i l l  a l so  21 
be assumed. 

For the  above values and the use of Eqs. (6) and (7) it i s  found that 

8 f o r  a-cut sapphire and 54 GHz longi tudinal  waves i s  -61'. B 

- ID cy 5 x 1 0  -0 
t 
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during the  pulse of acoustic e n e r a .  

10 times la rger  than  the calculated Bra@ ef fec t .  Therefore, even if t h i s  

s ignal  were noiseless it would have t o  be bucked out. 

from pas t  experience that laser amplitude noise i n  a narrow band of 

frequencies (1 sec time constant)  at  the  400 Hz rate i s  of the  order 

lom4 t o  10’’ compared t o  the laser in t ens i ty  Io. Because of the cw 

ref lected l i g h t  from the back surface, t h i s  noise is  always present. 

Therefore, a l a r g e  improvement i n  signal-to-noise could be real ized i n  the 

above experiment i f  the He-Ne l a s e r  were t o  be turned on only during the  

time that the C0,laser i s  on. Needless t o  say, the Bragg l i g h t  was not 

seen after a f a i r l y  complete search within a small angular range centered 

about the theore t ica l  Bragg angle. 

The heating e f f e c t  induces a s ignal  

4 

It is a l s o  known 

Future Plans 

BY Q <, % -- For acoustic frequencies less than but  near R 

because of t h e  high acoustic attenuation, it was shown that specular 

r e f l ec t ion  from the acoustic exci ta t ion surface ser iously complicates 

the  observation of the Bragg l i g h t .  

interferrometer was used t o  t r y  t o  separate the frequency sh i f ted  and 

In the  f i r s t  attempt a Fabry-Perot 

unshifted beams. 

sample w i l l  be cooled. For sapphire cooling from room temperature down 

I n  the fu ture  many changes can be made. F i r s t  the  

t o  

Samples t h a t  exhib i t  low absorption of C02 laser l i g h t  w i l l  be considered 

i n  order t o  prevent serious heating e f fec ts .  

T < W O K  results i n  a reduction of a by a t  least a f ac to r  of 10. 

It i s  a l so  possible t o  
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separate the Bragg l i g h t  from the l a se r  beam by using polar izat ion 

isolation. ' -- '  That is, the Bragg l i g h t  under certain conditions can 

have a d i f f e ren t  polar izat ion than the incident laser beam. 

(221 

Lastly, 

f o r  acoust ic  frequencies greater than 10 GHz, it w i l l  be feas ib le  t o  use 

high resolut ion monochromators t o  separate two l i g h t  beams d i f f e r ing  

by the  acoustic frequency. It should a l so  be pointed out that as R is  

increased, the wavelengths of t h e  detecting l i g h t  can be, i n  principle,  

decreased such that the condition R < R~ i s  always sa t i s f i ed ,  Because 

of ex is t ing  equipment only red l i g h t  (k = 6328 8)  has been considered 

so far. Argon l a s e r s  (k = 4880 8)  and x-rays w i l l  a l s o  be considered 

f o r  fu ture  experiments. 

d i f f rac ted  in tens i ty  var ies  as q2; therefore, there  is a g a i n  i n  

d i f f rac ted  power, f o r  any given acoustic frequency, as is decreased. 

Work towards most of these changes i s  current ly  i n  progress. 

It can be seen from Eq. (6)  that the Bragg 

R > nB -- For t h i s  frequency range the idea of Bragg sca t te r ing  

has t o  be given up completely. There are, however, two possible ways t o  

observe sound waves i n  samples f o r  R > R The f irst  method involves 

surface ref lect ion.  Instead of coherent multiple sca t te r ing  from many 
B' 

wavefronts, as is  the case with Bragg scattering, only one surface i s  

used t o  s c a t t e r  the laser l i g h t .  This one surface can i n  f a c t  be the  

acoustic exc i ta t ion  surface. Since t h i s  surface i s  moving a t  the acoustic 

frequency, the surface w i l l  Doppler s h i f t  a small portion of the ref lected 

l i g h t .  All of the  methods of separating 2 beams of l i g h t  d i f fe r ing  by 

the acoustic frequency mentioned above can be used t o  see the shifted 



l i g h t  although the e f f e c t  would be a t  least 100 times harder t o  see t h a n  

Bragg scattering. 

The second method involves a volume of hs/2 i n  depth i n  back 

This layer of material is  polarized by the of the exci ta t ion surface. 

detecting l i g h t  and re-radiates  l i g h t  which i s  sh i f t ed  i n  frequency 

due t o  the acoustic wave. 

and can be observed i n  direct ions which do not contain the specularly 

re f lec ted  laser  beam from the  surface. Unshifted background l i g h t  due 

t o  the R a l e i g h  sca t te r ing  again makes it important t o  have some way t o  

separate l i g h t  according t o  i t s  frequency. 

that the  frequency shifted component radiated in al l  4n steradians is  

loe7 compared t o  I f o r  s t r a i n s  of 10 . 

This radiat ion is emitted i n  a l l  4s steradians 

Rough calculat ions indicate  

-6 
0 
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DECAY OF HIGH-FREQUENCY LONGITUDINAL PHONONS* 
~ 

P. G. Klemens 

Abstract 

The anharmonic decay of a high-frequency longitudinal e l a s t i c  

wave a t  low temperatures, such t h a t  fsw > KT, is calculated by perturbation 

theory, using a Grueneisen parameter as measure of the anharmonicity. 

The attenuation a t  very low temperatures var ies  as the f i f t h  power of 

frequency, and is s m a l l  a t  frequencies below 10l2 Hz. 

* 
This work was supported by the National Aeronautics & Space Administration, 

under Contract No. NAS8-18023. 
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ANHARMONIC INTERACTIONS 

We consider a wave of frequency w in te rac t ing  wi th  other  modes 

The per turbat ion Hamiltonian due t o  owing t o  the cubic anharmonicities. 

cubic anharmonicities can be expressed i n  the form ( 3 )  

* 
where a(_q), a (2) are the  phonon annihi la t ion and creat ion operators, 

is  a coeff ic ient  t o  be discussed below, and the  displacement of a c3 
point  x due t o  a la t t ice  wave of wave-vector q and frequency w i s  

expressed as 

- - 

1 iq*x 

../-E 
u(2)  = - E e - - a(_q) - c 

where G i s  the number of atoms i n  the  c rys ta l ,  and E i s  a u n i t  vector 

defining the polar izat ion direct ion.  One can then show that the energy 

of each mode cons is t s  of N phonons, so that 

- 

and one can fur ther  show t h a t  the rate of change of N, the number of 

phonons i n  mode q, is given by 



where M i s  the atomic mass and 

If the anharmonicity is the same i n  all regions of the  crystal., and i f  w e  

confine ourselves t o  waves long compared t o  the interatomic distance, so  

that Umklapp processes play no role,  the coeff ic ient  c 

the following interference condition is  satisfied 

vanishes unless 3 

q = q' + q" - - - 

The magnitude of c depends on the  nature of the anharmonic 3 
forces. On the bas i s  of a simplified Grueneisen model one obtains the 

following approximate expression ( 3 )  

= 2r(3G)-1/2 Mv2 q q' q" c3 

where v i s  the sound velocity. One thus obtains i n  place of (4)  

[ (N+1 )N 'N" - N( N '+1  ) ( N " + l ) ]  1 - cos A u t  

ow2 
9' 
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The summation extends over a l l  modes 3' (including d i f f e ren t  po lar iza t ions)  

and over all polar izat ions of - q", but t he  wave-vector - qll i s  determined 

by (6). 

phonon q s p l i t s  i n to  q' and q", i .e* 

account of processes q + q' w q "  by changing the  s ign of w t  and q' i n  

( 5 )  and (6)  respectively, and by changing N' t o  (N'+1)  and (N'+1) t o  N' 

i n  equation (8). 

Equation (8) formally accounts only f o r  processes i n  which a 

- q t3 - q' + ql', but  one can a l so  take - - L 

- -  - - 

DECAY OF LONGITUDINAL PHONON 

Let us suppose now t h a t  mode - q is  a longi tudinal  wave, t h a t  

> I(T, and that the medium i s  an i so t rop ic  e l a s t i c  continuum, so  that 

w * / q *  = v, the sound velocity.  We dis t inguish between v and v the  

ve loc i ty  of locgi tudinal  and transverse Laves. 

I 11' 

The rescnance f ac to r  (1 - cos nLL\t)/p>w2 i n  ( 0 1  en::'nes that 

only these precesses contribute t c j  

vanishes. 

dN/dt] f o r  which & of eq. ( 5 )  

The requirement Ow = 0, together w i t h  the  select ion rule ( 6 ) ,  

allows only processes of the following type t o  occur 

L H T + T  

L - L + T  

L - L - T  

where L denotes a longi tudinal  phonon, T a transverse phonon. Tnere is  

a double degeneracy associated w i t h  each t ransverse phonon; there are 

thus 4 interact ions of type (ga),  two of type (9b) and two of t y p  (I?c). 
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Interact ion (gb) and (9c) i s  r e a l l y  the same interaction, but i n  (9b) 

the longitudinal mode q can occur i n  two places; i f  w e  require q t o  be 

on the left-hand side of equations (9), we must dis t inguish between 

processes (9b) and (9c). 

phonon q s p l i t t i n g  i n t o  two phonons; these processes can occur even a t  the 

absolute zero of temperature. 

of a transverse phonon; therefore they occur only a t  f i n i t e  temperatures, 

not a t  absolute zero. 

- - 

Processes of type (9a) and (9b) correspond t o  

- 
Processes (9c) require the p r io r  presence 

Consider first processes of type (9a). The locus of points  q* 

f o r  

- 
such t h a t  Du = 0 i s  a n  e l l i p so id  of revolution, w' = vIIq', 

w" = VIIQ", w = vlq, the wave-vectors a re  re la ted by (6) and their  

magnitudes by 

I q' + q" = - 
I1 V 

The e l l i p so id  i s  generated by rotat ing the  e l l i p s e  of Fig. 1 about OQ; 

0 and Q are the  f o c i  and the  distance of  OQ i s  q. 

The summation i n  (8) can now be w r i t t e n  

where a 3 i s  the atomic volume, so tha t  G a  3 is  t h e  volume of the c rys ta l ,  

while the  fac tor  4 arises from the sum over the polar izat ions of q' and 

q". NOW Du = 2vII 8% at points A and B and v II 8% a t  C, where 

- 
- 
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6% i s  an increment of - q' normal t o  the Surface Cw = 0. 

points t h e  expression f o r  Dw IS more complicated. 

a rb i t r a r i l y ,  replace the  e l l i p s e  by a sphere of radius q/2, and regard 

the  value o f b  a t  C t o  be typ ica l  for  t he  whole surface, then w e  obtain 

an approximate value of 

At intermediate 

If w e ,  ra ther  

This can now be substi tuted in to  ( e ) ,  and t h e  following r e l a t ion  can be used 

a(&) = Srt 
1 - cos Clwt s Dw2 

To deal with the fac tor  i n  square brackets i n  (8) we assume 

that N' and N" are a t  t h e i r  equilibrium values. In the case of an 

ul t rasonic  wave N i s  much l a rge r  than i ts  equilibrium value, and only 

the term linear i n  N need be considered. Thus 

( N + ~ ) N ' N ~ ~  - N ( N * + ~ ) ( N ~ ~ + ~ )  = - N ( N * + N ~ # + ~ )  

The decay rate  l / ~  of the  ul t rasonic  wave i s  defined by 

N d t  
1 = - -  - 
7 
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In  the  integrat ion over the surface of t he  e l l ipso id ,  q' and 

qff take up d i f f e ren t  values separately, even though 

A s  a f u r t h e r  s implif icat ion w e  assume t h e  values of q* and qtt t o  be 

constant and appropriate t o  t h e  value a t  point  C, i.e. 

q* + q" i s  constant. 

w *  = w" = w/2, or  

) q/2. With t h i s  simplification we combine (8), (ll), (vI/vII 
q' = q" = 

(12), (13) and (14) and obtain after some reduction 

- (N*+N"+l)  
I1 V 

2 5 (  = r  - 
2 n  Mv2 

D = "I'D where w i s  the  longi tudinal  Debye frequency, defined by w D 
and a3q; = 6x 2 . 

A t  the  absolute zero of temperature (N*+N"+l)  = 1. More generally, 

4 2  i f  it i s  a g a i n  assumed f o r  simplicity t h a t  W '  = = 

2 1 +4KThw 1 
2 i f  KT > - fiw 

We must now consider the  e f fec t  of processes (9b) and ( 9 c ) .  

To be de f in i t e  l e t  q be the  L-mode on t h e  left-hand side of (g), l e t  q' 

be the  T-mode (two cases)  and l e t  q" be the  L-mode on the  right-hand s i d e  

of (9b) or ( 9 ~ ) .  

- - 
- 
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The locus of q' i s  the surface Of revolution generated by 

ro ta t ing  the curve of Fig. 2 about the ax i s  WEE. 

of two branches. The smaller branch, passing through B, corresponds t o  

processes (gb); the la rger  branch, passing through C, corresponds t o  ( 9 c ) .  

This curve consis ts  

The posit ion of B o r  the magnitude of q' i s  given by 

since q" = qt  - q. Thus q1 E 2q/(l  + a ) ,  where c1 = vII/vI. Typically 

0: = 2/3 and qf = 1.2q. Similarly the posi t ion of C i s  given by 

v q + v q' = vl(q'-q) I I1 

or q' = 2q/(l  - a ) .  Typically qt  i s  then about 6q. 

If - q' is perpendicular t o  ql,  one readi ly  f i n d s  that (q'/q) = 0 

o r  

t o  q, one f i n d s  t h a t  

2a/( l  - 2); t h i s  determines the posi t ion of D. If q" i s  perpendicular - 

t h i s  determines the posi t ion of E and Et respectively. 

q!'/q N 3.3 i n  case (9c). 

These quant i t ies  determine the approximate dimensions of the  

Thus i f  u = 2/3 ,  

locus of qt  as drawn i n  Fig. 2. 

The surface of the branch OB i s  comparable t o  the  surface of 

Fig. 1. Since there  are only two possible polar izat ion combinations, 
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the  contribution of t h a t  branch (processes 9b) t o  the attenuation r a t e  

is  about half the contribution from processes (9a ) j  furthermore, t h i s  

contribution w i l l  have a similar temperature dependence. 

The contribution from processes (9c) i s  much more d i f f i c u l t  

t o  estimate. However, since these processes require the p r io r  presence 

of transverse phonons, they can be disregarded a t  the absolute zero of 

temperature. A t  elevated temperatures, however, they w i l l  dominate the 

in te rac t ion  process. Since the surface area of that branch exceeds that 

of Fig. 1 by a fac tor  of order 19, we may wri te  the t o t a l  attenuation 

i n  the form 

Here w e  have increased the r e s u l t  of (16) by a f ac to r  3 / 2  t o  include 

processes (9b) as w e l l  as (ga), and approximated the temperature dependence 

(17) by the high-frequency limit. 

processes (gc). 

show the following qua l i ta t ive  character is t ics :  

The addi t ional  term F(T) describes 

We have no accurate knowledge of F(T), but expect it t o  

A t  T = 0, F(T) = 0. When KT < W ,  F(T) should vary as some 

power of T; since the major contributions would then come from the region 

near 0, when the  locus of q' is  cone-shaped, the behavior should be 
L 

similar t o  the attenuation of 

F(T) 

a transverse wave, (4'5) so t h a t  
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I n  t h i s  region F(T) is s t i l l  a r e l a t ive ly  s m a l l  correction. 

of F(T) with T should be considerably slower t h a n  given by (22) once 

KT i s  comparable t o  fiw. 

reflecting the closed form of the  branch ODC; since t h i s  branch has an 

area typical ly  30 times that of the branch OE'B, and since the l a t t e r  

branch contributes about 1/3 of the second term i n  (21), we would expect 

The increase 

A t  higher temperatures F(T)/T should saturate,  

as K T > i l w .  

I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 

SOME NUMERICAL CASES 

Let us consider a typ ica l  so l id  of y = 2, W2/K 2 X,OOO°K, 

vI/vII = 3/2, and a Debye temperature 3 2 1000°K. A t  the  absolute zero 

of temperature the anharmonic decay rate then becomes 

-18 4 -1 = 10 v w sec 

I 
(24) I 

1 
I 
I 

where V is  the  frequency expressed i n  GHz (noting that 20 GHz corresponds 

t o  1°K), while w is  the frequency i n  radians/sec. 

Q! i s  ( ~ ~ 7 )  , and taking v 2 10 cm/sec, 

The attenuation coeff ic ient  

-1 6 
I 

-1 cm -24 4 a = 10 v w  

= 6 x cm -1 
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Thus t h e  anharmonic at tenuat ion l e n g t h  1/01 i s  many centimeters even a t  

frequencies as hieh as 100 GHz. I n  practice,  the at tenuat ion of such 

waves i n  samples of ordinary dimensions i s  probably governed by surface 

irregularities. 

anharmonic processes discussed here would form an important a t tenuat ion 

mechanism a t  low temperatures ( i n  that case w e l l  below WOK). 

It is  only when the 1000 GHz region i s  reached that the 

A t  nigher temperatures the anharmonic processes w i l l  be more 
5 

important. In quartz (8 = 6oO°K, Mv2/K = W,0OO0K, vI = 6 x lo’ cm/sec) 

and a t  114 GHz one would expect a t o  be about 1 x cm’l a t  T = 0 and 

about 1 x 10-1 a t  1O0K. 

t i o n  about a f ac to r  10 l a rge r  a t  that  temperature and frequency. 

discrepancy may w e l l  be due t o  col l inear  processes of the type 

which w e  have not considered here, but which play a large ro l e  a t  lower 

frequencies. (‘j7) 

they should lead t o  an at tenuat ion proportional t o  the  f i r s t  power of 

frequency, and the ex t r a  attenuation found by Ilukor and Jacobson i s  

considerably higher than would be indicated by an extrapolat ion from the  

results of Thaxter and Tannenwald‘’) a t  70 GEz. 

Il&or and Jacobson“) found an anharmonic a t t e n u a -  

The 

L H L  + L, 

These processes can be important when KT > ~ u ,  though 

Clearly one needs not o n l y  a better theory, pa r t i cu la r ly  

ca lcu la t ions  for the awkward region &I 2 KT, bu t  a l s o  more experimental 

data. 
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FIGURE CAPTIONS 

Fig. 1 Locus of q' f o r  processes (9a): 

q' and q" are transverse. 

- q = 2' + g", 2 is longitudinal, - 
- - 

Fig. 2 Locus of - q' fo r  processes (9b) and ( 9 c ) :  

branch OE'B, q + $' = - q" 
longitudinal, - q' is transverse, the length OQ is equal to q. 

q = 3' + - q" for 

for branch ODEC; - q and - q" are 
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